If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+6t-40=0
a = 1; b = 6; c = -40;
Δ = b2-4ac
Δ = 62-4·1·(-40)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*1}=\frac{-20}{2} =-10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*1}=\frac{8}{2} =4 $
| -2x-45=-15x-6 | | 2x=(2x-3)+6 | | 8s-20=4 | | 〖13〗^3x=8.4 | | 4x2+11x+6=0 | | 4+2p=10(3/5*p-2) | | 3x=4x-4.5 | | 1+2/3w=1/2=2w | | 2x+3.14x=65 | | -6-5x+24=2x+9-7x | | 3x-13/5=3 | | 3x–2=2x–1 | | 7/2+1/2x=131/2+9/2× | | -3/5*b=8/3 | | -13.3+x/11.796=-0.296 | | -5/6*e=6/7 | | -5/6e=6/7 | | h-3/7=4 | | -1/2+d=-7/6 | | 9/7+z=6/7 | | 85-2x=80-3x | | 2/3+6x=12 | | 2−(−8)=a | | -7p-39=-8(p+4) | | -12+6x=2x+8(2+4x) | | 8(n-8)=-28-n | | 16+2n=-3n-(-4+7n) | | 6(5v-7)=-7v-5 | | 7(6+5v)=v-26 | | 6n+16=2+4(-7+3n) | | -4(1+3a)=-34+3a | | 20-5n=-5(-4+5n) |